Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα
نویسندگان
چکیده
BACKGROUND Platelets are essential for maintaining haemostasis and play a key role in the pathogenesis of cardiovascular disease. Upon ligation of platelet receptors through subendothelial matrix proteins, intracellular reactive oxygen species (ROS) are generated, further amplifying the platelet activation response. Thrombin, a potent platelet activator, can signal through GPIbα and protease-activated receptor (PAR) 1 and PAR4 on human platelets, and recently has been implicated in the generation of ROS. While ROS are known to have key roles in intra-platelet signalling and subsequent platelet activation, the precise receptors and signalling pathways involved in thrombin-induced ROS generation have yet to be fully elucidated. OBJECTIVE To investigate the relative contribution of platelet GPIbα and PARs to thrombin-induced reactive oxygen species (ROS) generation. METHODS AND RESULTS Highly specific antagonists targeting PAR1 and PAR4, and the GPIbα-cleaving enzyme, Naja kaouthia (Nk) protease, were used in quantitative flow cytometry assays of thrombin-induced ROS production. Antagonists of PAR4 but not PAR1, inhibited thrombin-derived ROS generation. Removal of the GPIbα ligand binding region attenuated PAR4-induced and completely inhibited thrombin-induced ROS formation. Similarly, PAR4 deficiency in mice abolished thrombin-induced ROS generation. Additionally, GPIbα and PAR4-dependent ROS formation were shown to be mediated through focal adhesion kinase (FAK) and NADPH oxidase 1 (NOX1) proteins. CONCLUSIONS Both GPIbα and PAR4 are required for thrombin-induced ROS formation, suggesting a novel functional cooperation between GPIbα and PAR4. Our study identifies a novel role for PAR4 in mediating thrombin-induced ROS production that was not shared by PAR1. This suggests an independent signalling pathway in platelet activation that may be targeted therapeutically.
منابع مشابه
Mitochondria-Derived Reactive Oxygen Species Play an Important Role in Doxorubicin-Induced Platelet Apoptosis
Doxorubicin (DOX) is an effective chemotherapeutic agent; however; its use is limited by some side effects; such as cardiotoxicity and thrombocytopenia. DOX-induced cardiotoxicity has been intensively investigated; however; DOX-induced thrombocytopenia has not been clearly elucidated. Here we show that DOX-induced mitochondria-mediated intrinsic apoptosis and glycoprotein (GP)Ibα shedding in pl...
متن کاملO 22: Reactive Oxygen Species and Epilepsy
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...
متن کاملThrombin binding to GPIbα induces platelet aggregation and fibrin clot retraction supported by resting αIIbβ3 interaction with polymerized fibrin
Thrombin plays a pivotal role in haemostasis and thrombosis as the main effector protease of the coagulation cascade converting circulating fibrinogen into fibrin. Thrombin is also a powerful activator of platelets, inducing platelet shape change, release of the granular content, integrin αIIbβ3 activation and platelet aggregation (1). Since thrombin and platelets are critical in the developmen...
متن کاملGpIbα Interacts Exclusively with Exosite II of Thrombin☆
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thr...
متن کاملDifferential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis.
OBJECTIVE Reactive oxygen species (ROS) are known to regulate platelet activation; however, the mechanisms of ROS production during platelet activation remain unclear. Platelets express different isoforms of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidases (NOXs). Here, we investigated the role of NOX1 and NOX2 in ROS generation and platelet activation using NOX1 and NOX2 knocko...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015